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The use of a combined Machine Vision (MV) and GPS-based approach has been recently
proposed in simulation efforts as an alternative approach to ‘pure GPS’ for the problem of
Autonomous Aerial Refueling (AAR) for Unmanned Aerial Vehicles (UAVs). While MV has
appealing capabilities, a few critical issues need to be addressed for the actual implementation
of MV for the AAR problem. For this purpose a simulation environment was developed
featuring an interaction with a 3D Virtual Reality (VR) interface that generates an image
stream of the AAR maneuver. The image flow is processed by the MV algorithm, providing,
as output, a vector of the estimates of the relative tanker-UAV distance and attitude. This
signal is then used by the UAV feedback control laws for ‘tracking & docking’ to the refueling
boom. The MV algorithm specifically provides image processing for the isolation of optical
markers, which are located at specific points on the tanker, extraction of the marker center of
gravity, marker matching algorithm, and pose estimation algorithm for the final evaluation of
the relative distance vector. Within this effort emphasis was placed on the development of an
‘ad-hoc’ feature matching algorithm followed by a comparative analysis of the performance
of different matching algorithms. The paper presents a detailed analysis of the results from
open loop and closed loop simulation of the different MV algorithms.

Nomenclature
3DW 3 dimensional window
AAR autonomous aerial refueling
CCD charged coupled device
CG center of gravity
DFG digital frame grabber
FM feature matching
GLSDC Gaussian least squares differential correction
j index of a generic marker
k sampling time
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LQR linear quadratic regulator
m number of mv detected markers
mL number of labeled markers
MV machine vision
N number of physical markers
PE pose estimation
Sij matching support
STD standard deviation
VRT virtual reality toolbox

I. Introduction

ONE of the biggest current limitations of UAVs is their lack of autonomous aerial refueling (AAR) capabilities.
To achieve AAR capabilities specific technical challenges need to be overcome. For AAR purposes, a key issue

is represented by the need of a high accuracy measurement of the relative ‘Tanker-UAV’ position and orientation
in the final phase of docking and during the refueling. Although sensors based on laser, infrared radar, and GPS
technologies are suitable for autonomous docking,1 the use of MV technology has been recently proposed in addition
or as an alternative to these technologies.2,3,4 Furthermore, a MV-based system has been proposed for close proximity
operations of aerospace vehicles5 and for the navigation of UAVs.6

The estimation of the 3D orientation and position of an object from its images (pose estimation) is a well-known
topic in Computer Vision research. Within this effort, the ‘Pose Estimation Problem’ has been considered for the
purpose of evaluating the relative ‘Tanker-UAV’ position and orientation. The control objective is to guide the UAV
within a defined 3D Window (3DW) below the tanker where the boom operator can then manually proceed to the
docking of the refueling boom with the UAV fuel receptacle followed by the refueling phase. A digital camera
installed on the UAV generates a stream of images of the tanker. These images are then processed by a set of MV
algorithms providing in real time an estimate of the tanker-UAV relative position and orientation. This problem is well
known in the technical literature as the ‘Pose Estimation’ problem. The set-up of the pose estimation is substantially
improved if a number of features can be detected from the digital images of the tanker.

For the purpose of this study these features are selected to be optical markers, which can be considered to be
active sources of lights. It should be emphasized that this assumption does not subtract from the generality of the
approach. In fact, different features could be selected—such as passive source of lights or even tanker geometric
corners—without any loss of generality.

The image processing algorithms have to be computationally simple, reliable and suitable for real-time imple-
mentation. Within the pose estimation algorithm it is assumed that between sequential images a set of corresponding
points is always found and available. In other words, it is assumed that the position of the detected markers in the
object reference frame is known.

It is clear that severe problems may arise when this assumption is violated, leading to potentially biased estimation
of the relative position parameters.7 This problem is typically present when the number of corresponding points (that
is, the number of detected markers) is small and time varying due to possible physical occlusions and/or loss of
visibility during the approach and docking phases. For example, as the UAV approaches the tanker, the presence of
the boom itself could lead to a loss of visibility of one or multiple markers. Therefore, within this effort emphasis
has been placed in studying the feature correspondence problem interfaced to the pose estimation algorithm within
the AAR problem.

A detailed AAR simulation environment has been developed by the authors in8 with the UAV modeled with the
parameters of the ICE-101 aircraft9 and the tanker modeled with the parameter of a KC135 aircraft.10 This simulation
provides detailed modeling for the elastic flexibility of the boom, the wake effects from the tanker on the UAV, and the
atmospheric turbulence. The ‘tracking & docking’ control laws have been designed using a conventional LQR-based
approach.

With respect to the previous effort by the authors, the simulation environment has been augmented with a Virtual
Reality interface providing a stream of images. These images are then used by a MV algorithm for the final derivation
of the ‘tanker-UAV’ relative distance vector. The reliability of the pose estimation provided by the MV algorithm,
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based on different feature matching techniques has been analyzed. Extensive open loop and closed loop simulation
results of the various MV algorithms have also been analyzed and discussed.

II. The MV-based AAR Problem
A block diagram of the MV-basedAAR problem is shown in Fig. 1. The relevant geometric distances and associated

reference frames are also shown in the figure.

A. Reference Frames
The study of the AAR problem requires the definition of the following Reference Frames (RFs):
• ERF is the earth-fixed reference frame
• TRF is the body-fixed tanker reference frame located at the aircraft center of gravity
• URF is the body-fixed UAV reference frame located at the aircraft center of gravity
• CRF is the body-fixed UAV camera reference frame.
The following notations will be used in this paper. ABe represents the vector from point A to point B expressed

within the ERF; the matrix Re
t represents the rotation of the TRF with respect to the ERF. To make the docking problem

invariant with respect to the nominal heading of the aircraft, an additional fixed frame MRF is defined. This frame is
rotated of the nominal heading angle �0 with respect to the ERF. The transformed vectors in the MRF are evaluated
using the relationships: RBm = Rm

e · RBe where Rm
e is a fixed rotation matrix from ERF to MRF.

B. Problem Formulation
The objective is to guide the UAV such that its fuel receptacle (point R in Fig. 1) tracks the center of a 3-dimensional

window (3DW) under the tanker (point B). Once the UAV fuel receptacle reaches and remains within this 3DW, the
boom operator is assumed to take control of the refueling operations. It should be underlined that point B is fixed
in the TRF with the dimensions of the 3DW (δx, δy, δz) being an important design parameter. It is assumed that
the tanker and the UAV share a data communication link. The UAV is equipped with a digital camera along with
MV algorithms acquiring the images of the tanker and extracting the point-wise features (points Pj ) from the tanker
image. For simplicity, the 2-D image plane of the MV is assumed to be coincident with the ‘x–z’ plane of the CRF.

Fig. 1 Block diagram of the AAR problem with relevant reference frames.
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C. Receptacle-3DW-Center Vector
As described above the reliability of the AAR is based on the accuracy in the measurement of the distance RBe.

This distance is derived from the available measurements of distance and attitude coming from the UAV and the
tanker. For this purpose, the following geometric transformation is introduced:

RBe = Re
u · (

UCu − URu + Ru
c · CT c

) + Re
t · TBt (1)

Since the fuel receptacle and the 3DW-center are located at fixed and known positions with respect to center of
gravity of the aircraft, in the above equation the vectors URuand TBt are exactly known, while the values of rotation
matrix Re

t and Re
u are derived by the attitude sensors of the tanker and the UAV respectively. The camera-tanker

distance (CT c vector) expressed along the CRF is provided by the MV algorithms. The accuracy of the estimation of
the CT c vector will be extensively discussed in this paper.

III. The Virtual Environment for AAR Simulation
A. Tanker and UAV Dynamics

The aircraft models used for AAR simulation purposes have been developed using the conventional modeling
approach outlined in.11 The resulting model is described by a (12 states) state space model. First order dynamic
models have been used for the modeling of the actuators using typical values for aircraft of similar size and/or
weight. The B747-tanker and UAV features a typical set of autopilot systems designed using aconventional LQR
approach. Details on the design of the tracking and docking control scheme are provided in.8 The boom system
has been modelled using a 3-D finite elements model.12 The atmospheric turbulence acting on the refueling boom
and on both aircraft has been modeled using the Dryden wind turbulence model.13 A ‘light’ turbulence was selected
since aerial refueling is typically performed at high altitudes in calm air. The wake effects of the tanker on the UAV
are more significant than the atmospheric turbulence and have been modeled through the interpolation from a large
amount of experimental data14,15 as perturbations to the aerodynamic coefficients cD, cL, cm, cY , cl, cn for the UAV
aerodynamic forces and moments.

B. The 3D Visual Interface
The modeling described above was linked to aVirtual Reality Toolbox® (VRT) interface to provide the 3D graphics

associated with the AAR maneuvers. Specifically, the interface allows the positions of the simulated objects, to drive
the position and orientation of the corresponding objects in aVirtual World. Within thisVirtual World, optical markers,
were located on the B747 tanker model at specific locations, as discussed in.8 The markers were modeled as red
spheres with a radius of 10 cm each. The images of the tanker were then acquired and processed by a ‘virtual’ set of
MV algorithms, which in real-life are to be hosted in the UAV flight computer.

Figure 2a shows a typical VRT image as seen by the UAV camera, while Fig. 2b shows the selected positions for
the markers.

Fig. 2 a) VRT image, b) position of the optical markers.
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IV. The MV System
The UAV-tanker distance vector CT cis estimated through the MV-based algorithms in the block diagram shown

in Fig. 3. This scheme, featuring the components described below, will be referred as the “realistic MV model”:
• VRT interface: This block provides the continuous image stream associated with the (tanker + UAV) system

dynamics generated from the simulation.
• Digital Frame Grabber (DFG): This block represents the interface between the simulated world and the MV

system. Particularly, it emulates the process of the acquisition of the digital image. The DFG is characterized
by the pixel resolution of the camera. In this effort a matrix of 1280 × 1280 pixels has been assumed with the
image rate set at 20 frames/sec. The output stream produces images in bitmap format.

• Image Processing: This block performs several important functions. Digital image processing is applied to
extract the ‘point features’from the stream of the images. First, the image is filtered through the application of a
feature detection algorithm. Since red markers have been considered in this study, the detection was performed
using a simple ‘red color enhancing filter’ with the goal of isolating the “spots” relative to the red markers.
Next, additional image manipulation tools are applied, leading, as final result, to a binary black and white
image. Finally, after the image of the markers has been isolated from the background, an ‘ad hoc’ procedure,
consisting of morphological closures and openings, is applied to isolate and label each single connected spot.
A spot is considered significant only if it contains a number of pixels larger than a pre-defined threshold. All
the image manipulations previously described were performed using functions of the Matlab Image Toolbox.

• CG extraction: This block computes the center of gravity (CG) of each marker projection, so that each marker
projection can be represented by a single couple of u and v coordinates.

• Feature matching algorithm: The previous ‘CG Extraction’block generates, for each frame, the 2D coordinates
[uj , vj ] of the CG for each of the markers, which are detected in that particular frame. At this time, these
points are not conceptually associated to any specific marker of the tanker. In fact, in the general case of N

detected CGs for N markers, there are N ! possible associations between CG points and detected markers to
be explored. The above problem is a classical ‘Feature Matching’ (FM) problem. It is clear that this problem
has major implications on the closed-loop performance of the docking control laws. The FM algorithms will
be described with details in section 5.

• Pose estimation algorithm: Finally, after the set of ‘detected markers’ has been matched to the full set or to a
subset, in case of loss of visibility, of the physical markers of the tanker, a ‘Pose Estimation’ (PE) algorithm

Fig. 3 Components of the ‘realistic’ and ‘ideal’ MV models.
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is used to provide estimates of the UAV-tanker relative distance and pose. The PE algorithm will be described
with details in section 6.

• MV ‘pin hole’ camera: An ‘ideal’ MV model, as opposed to the ‘realistic’ MV model with the components
described above, has been also implemented using a geometric projection model (‘pin hole model’) for
performance comparison purposes. In this model the coordinates of the markers in TRFare projected without
any error on the MV plane. In this “ideal” MV a nominal (error free) matching has also been assumed for all
the detected markers. The PE algorithm is the same as for the ‘realistic’ MV model. The ‘ideal’ MV model is
shown in Fig. 3.

V. The ‘Image Matching’ Problem
Following the extraction of the 2D coordinates [ujvj ] of the GCs of the detected markers from the image, the

next task is to assign to each of them a particular optical marker Pj on the tanker, as shown in Fig. 4. The general
approach is to identify a set of detected markers [ujvj ] to be matched to a subset of estimated markers positions
[ûj v̂j ] through a projection model (“pin-hole” model21,16) that estimates the projection in the camera plane of the
nominal position of the markers Pj .

According to this model, a marker ‘j ’ with coordinates CPc
(j) = [xc

p,j , y
c
p,j , z

c
p,j ]T in the CRF frame is projected

into the image plane whose coordinates [û,
j v̂j ] can be computed using the projection equation:

[
ûj

v̂j

]
= g

(
f, CPc

(j)

) = f

xc
p,j

[
yc

p,j

zc
p,j

]
(2)

where f is the camera focal length. The components of the marker Pj expressed in the TRF are fixed and known ‘a
priori’ with coordinates defined by the vector TPt

(j). The following geometric equation relates the vector CPc
(j) to the

vector TPt
(j):

CPc
(j) = CT c + Rc

t · TPt
(j) (3)

where the vector CT c = [xc
t , yt

c, zc
t ]T and the matrix Rc

t represents the origin and the orientation of the TRF with
respect to the CRF respectively. Matrix Rc

t is specified by the relative yaw, pitch, and roll angles �c = [ψc
t , θ

c
t , ϕc

t ]T.
The vector CT c and the matrix Rc

t are not directly available but are derived from available measurements. Particularly,

Fig. 4 The MV “pin-hole” model.
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Table 1 Simulation parameters.

Heading angle: �0 = 0◦ MV sampling rate: 20 Hz Dryden Model
Known distance vectors: MV pixel size: 10 μm at light conditions
UCu = [−3, 0, −0.6] m GPS noise-std: 1.5 m
URu = [−1, 2.5, 0] m CCD size: 1.28 cm Wake effects
TBt = [−22, 0, 8] m GPS sampling rate: 10 Hz (Bihrle experimental
CTC(0) = [125 0 30] m V noise-std: 1.5 m/s data)

α, β noise-std:0.0045 rad
p, q, r noise-std: 0.015 rad/s
ψ, θ, ϕ noise-std: 0.007 rad
Transmission delay: 0.05 s

the following relationships are used:

CTc = Rc
u · Ru

e

(
ETe − EUe

) − Rc
u · UCu (4)

Rc
t = Rc

u · Ru
e · Re

t (5)

In Eq. (4), vectors ET e and EUe are measured through GPS sensors installed on the tanker and UAV respec-
tively, the attitude matrices Ru

e and Re
t are derived using yaw, pitch, and roll angle measurements of the UAV and

tanker respectively, while Ru
c is constant and known. Therefore, the accuracy of the estimates for [ûj , v̂j ] is strictly

related to the accuracy of the measurements involved in Eqs. (4) and (5). For the purpose of achieving realistic
simulation results, a nominal level of noise has been ‘injected’ in all the measurements involved in Eqs. (4) and (5)
(see Table 1).

A. Formalization of the ‘Points Matching’ Problem
Initially, the set of points pj ≡ [uj , vj ] from camera measurements are not related to the actual markers on the

tanker. The problem can be formalized in terms of matching the set of points P̄ = (p1, p2, . . . , pm) to the set of

points ˆ̄P = (p̂1, p̂2, . . . , p̂n) where p̂j ≡ [ûj , v̂j ]. In this effort the set P̄ represents the set of the m‘to be matched’

detected markers extracted by the camera measurements, while the set ˆ̄P represents the set of the n(n = 9) “nominal”

markers estimated through eq. (2). Since the data sets P̄ and ˆ̄P represents the 2D projection of the markers at the
same time instant on the same plane, an high degree of correlation would be expected. In the ideal case corresponding
points would be exactly superimposed and the matching process would be trivial; however, in the presence of different
sources of system and measurement noise, a matching problem has to be formalized and solved. In general, a matching

problem can be formalized as an optimal pairing of points in the set P̄ to those in the set ˆ̄P such that the sum of the
distances between the paired points is minimized. Fig. 5 shows a correct matching between the two data sets in a
typical image from the AAR simulator.

B. Approaches to the ‘Points Matching’ Problem
The mapping between feature points is a key issue in several computer vision problems, such as detecting moving

objectives in a scene or calculating motion parameters of the camera with respect to a moving object. A detailed
technical literature describes a number of robust matching techniques for point sets.17,18 Usually, the degree of
similarity between 2 data sets is defined in terms of a cost function or a distance function derived on general
principles as geometric proximity, rigidity, and exclusion.19 These constraints can be divided in local constraints,
which can be evaluated independently for each possible matching, and global constraints, which need the joint
analysis of a set o potential matching.20 The best matching is then evaluated as the result of on optimization process
exploring the space of the potential solutions. As later described, a graph can also be derived such that the nodes
represent feature points and links represents the distance between features; therefore, the problem can be cast as a
classical assignment problem. The assignment problem is a classic example of a network flow problem on a graph.
Network flow problems are Linear Programming (LP) problems for which computationally efficient algorithms (that
exploit the particular structure of those problems) are routinely used.
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Fig. 5 Matching between the labeled set of points ˆ̄P and the unlabeled set P̄ .

In21 a comparison of different methods is shown. Interesting relaxation techniques are shown in.22–23 Other
approaches based on ‘registration’and ‘tracking’are shown in.24 These approaches are often augmented by a feedback
from the calculated motion parameters using matching evaluated in the previous frames.

In theAAR problem it was observed that the discrepancy between the two matching sets can be reasonably modeled
by assuming a simple rigid translational model. Under this assumption the measure of the matching strength between
point piand p̂j has been defined in terms of their Euclidean distances. The distance Matrix D is defined as the matrix
whose entries D(i, j) are the distances dij between each couple of points ‘i’ and ‘j’ of the two sets.

The performance of a few well-known ‘Point Matching’ algorithms have been evaluated and compared in the
context of MV-based AAR. Furthermore, a new ‘ad-hoc’ matching method has been here formulated, where the
strength of a candidate match is measured not just in terms of the relative distance between two candidate matching
points pi and p̂j but also in terms of a global matching error between all the matching points that would have been
originated by applying the rigid translation associated with the two matching points pi and p̂j .

C. The Bipartite Graph
A weighted bipartite graph—shown in Fig. 6—is a weighted graph whose vertex set can be divided into two

disjoint sets. In this study the two sets are represented byP̄ and ˆ̄P . In the bipartite graph each vertex in P̄ is connected

to all the vertex in ˆ̄P trough edges; the weight dij associated to the edge (pi, p̂j ) is the Euclidean distance between
point pi and point p̂j . The matrix D(i, j) therefore contains information about all the edges in the graph. A valid
matching in this graph is defined as a subset M of η edges (η = min(n, m)) such that each vertex of the graph is
incident upon at most one edge of M. Given a subset M, its weight is defined as the sum of all the η weights of M.
If an edge (pi, p̂j ) belongs to M, then vertex pi is said to be matched to vertex p̂j and vice versa. A matching with
a minimum weight is said to be a minimum weight matching or simply a minimum matching.

A specific algorithm, called the Hungarian method, has been introduced for finding a minimum weight matching
in a weighted bipartite graph. This algorithm has a complexity of O(n3). A detailed description of this algorithm can
be found in.25 The important aspect of this method is that this algorithm is always guaranteed to find the minimum
weight matching. It should be emphasized that, although the Hungarian method always provides a minimum weight
matching, it is not guaranteed that the provided matching is indeed correct.
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Fig. 6 Bipartite graph associated to sets ˆ̄P and P̄ .

D. The Greedy Method
Within this method a greedy algorithm, outlined in25, is used for solving the points correspondence problem.

Given the graph distance matrix D(i, j), the set of edges is explored to find the edge (pi, p̂j ) with the smallest
weight (distance dij ). The point pi is matched to the point p̂j ; next, all the edges associated with pi and p̂j are
removed from further consideration.

The above step is repeated until every point in P̄ is matched to some point in ˆ̄P .Although very simple and efficient,
this algorithm does not always produce a matching of minimum weight; furthermore, it is possible for the algorithm
to get stuck in a local minimum.26

To improve the robustness of this method and to facilitate the matching, a “center of gravity correction” is

preventively applied to the points of set ˆ̄P , to have the CG of the “translated” ˆ̄P set coincident with the CG of the
data set P̄ . To avoid inconsistent translations, this operation is only applied to the frames where the number of points

in P̄ and ˆ̄P coincide.

E. Mixed Hungarian and Greedy Method
This method is essentially the fusion of the two previous methods. Therefore, a point matching (pi, p̂j ) is

considered valid if and only if the same matching is confirmed by both methods. The points pi for which the two
methods do not provide consistent results are considered unreliable and, therefore, discarded by the algorithm.

F. The Proposed Robust Matching Method
A critical issue is the robustness of the matching algorithm in presence of measurement errors affecting the

estimation of the position of markers set ˆ̄P . Therefore, some specific features were introduced with the objective
of increasing the robustness of the matching algorithm. Before describing the resulting algorithm, the following
definitions are introduced:

• Matching Support: It is assumed that the main effect associated with the presence of the (measurement and
system) noise is a rigid translation between the two matching sets. Under this assumption, for each candidate
match (pi, p̂j ), the vector tij = (p̂j − pi) is assumed as a possible rigid translation vector, due to the presence

of the noise, from points in the set P̄ to points in the set ˆ̄P . After the application of the rigid translation tij to all

the points in P̄ , a generic translated point ph + tij is directly matched to the nearest point p̂k̄h
in ˆ̄P according

to the following “winner takes all” method:

k̄h = arg min
k

(∥∥p̂k − (ph + tij )
∥∥)

k = 1, . . . , n (6)

The corresponding matching error is then given by:

ēh = ∥∥p̂k̄h
− (ph + tij )

∥∥ k = 1, . . . , n (7)
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Repeating this procedure for all the m points in P̄ , it is then possible to define a vector of possible matching
K̄ij = [k̄1, . . . k̄m] associated to the translation tij . In the event case that two or more elements in K̄ij receive the
same index, only the association with the smallest matching error is considered valid while the remaining are deleted
because their matching is considered unreliable. Therefore, the number of detected and labeled mL markers is in
general less or equal to m.

The matching support for the association set K̄ij is then defined as:

Sij = 1

mL

mL∑
h=1

ēh (8)

The cost Sij can then be considered a measurement of the robustness for the candidate matchK̄ij , since it takes
into account the overall mean matching error between the two data sets. The best matching K̄∗

ij is then selected as the
one providing the minimum value of the matching support ( S∗

ij ) evaluated among all the possible translations tij :

S∗
ij = min

i,j

(
Sij

)
i = 1, . . . , n j = 1, . . . , m (9)

Additional features could be introduced into the matching algorithm. For example robustness could be increased
by estimating marker motion parameters in successive frames and using this information to predict the future position
of a labeled marker.

VI. The Real-Time Pose Estimation Problem
After the ‘Point Matching’ problem has been solved, the information in the set of points P̄ are then used to

derive the rigid transformation that relates the CRF to TRF . This topic is well-known in the technical literature as the
‘Pose Estimation’ (PE) problem.27,28 Particularly, the objective is to evaluate the mapping correspondences between
the 3-D physical points (markers) expressed in the object coordinates (TRF) and their 2-D projections expressed in
image ‘u-v’ coordinates (CRF). For an arbitrary number of points, the most extensively used approach for the PE is
based on the application of a non-linear least-squares algorithms reducing itself to the minimization of a non-linear
cost function, typically solved iteratively using some variations of the Gauss-Newton method.27,29,30,31 In particular,
the Gaussian Least Squares Differential Correction (GLSDC) algorithm has been implemented in this study.2 This
algorithm has shown to provide desirable robustness, convergence, and accuracy even in presence of quantization
noise produced by the CCD matrix. The non-linear 3-D to 2-D correspondence is described in terms of the projection
equation already introduced in Eq. (2). The unknowns of the problems are the components of the vectors CT c and
�c in Eq. (3). For simplicity purposes these unknown have been grouped in a vector X = [xc

t , y
c
t , z

c
t , ψ

c
t , θ

c
t , ϕc

t ]T ;
this vector defines uniquely the relative distance and attitude of the UAV camera fixed CRF respect to the TRF.

A. The Pose Estimation Algorithm
Prior to describing the algorithm the 3-D to 2-D perspective projection equations relating the unknown vector X

to the known vector TPt
(j) are recalled below:

[
uj

vj

]
=

[
gu(f, X, TPt

(j))

gv(f, X, TPt
(j))

]
j = 1, . . . , mL (10)

By grouping the equations (10) for all the ‘mL’ labeled markers, the following 1 × 2mL vector of non-linear
relationships is then generated:

G = [
gu1, gv1, . . . , gumL

, gvmL

]T
(11)

Next, the MV estimation error at sampling time k is calculated as:

�G(k) = Gmeas(k) − G
(
f, X̂(k), TPt

(j)(k)
)

(12)

where Gmeas(k) is the vector of the measured coordinates of the markers on the image plane and X̂(k) is the current
estimation of vector X(k).
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The updated estimation X̂(k + 1) is provided through the application of the GLSDC algorithm:

P(k) = AT (k) · W · A(k) (13)

�X̂(k) = P −1(k) · AT (k) · W · �G(k) (14)

X̂(k + 1) = X̂(k) + �X̂(k) (15)

where A(k) is the 2mL × 6 Jacobian matrix:

A(k) = dG(k)

dX(k)

∣∣∣∣
X=X̂(k)

(16)

nd W is the 2mL × 2mL covariance matrix W = diag(1/σu1, 1/σv1, . . . 1/σvmL
, 1/σvmL

) of the estimation error. The
initial guess X̂(k = 0) is computed using the information provided by GPSs and aircraft sensors.

B. Modification of the GLSDC
The basic algorithm (13–16) is designed to work with a fixed number of ‘mL’ markers. The following set of

modifications has been introduced for handling a time varying number of markers. At the beginning of each time
step the number of the labeled markers is evaluated; their number is, in general, time varying because of temporary
occlusions (with the markers remaining undetected) or simply because the markers do not receive a valid label from
the matching algorithm. This implies that (11) has to be modified with the appropriate number of rows; next, the
dimensions and the values of the matrices A and W in (13–16) also need to be revised accordingly. It should be
emphasized that a minimum of 3 markers are required by the algorithm to generate a compatible solution. If more
than 3 markers are available the algorithm provides a ‘Least Square’ solution. The improvements associated with the
described modification of the GLSDC algorithm will be evident in the simulations described below.

VII. Analysis and Results
The goal of the study was to analyze the overall performance provided by the different feature labeling schemes

in conjunction with the DGLS pose estimation algorithm applied to the AAR problem. A detailed set of simulation
studies was performed. During the final docking phase (from the pre-contact to contract position) the UAV and the
Tanker are aligned along the same heading angle. It is assumed that the UAV fuel receptacle and the on-board camera
are both perfectly aligned with the UAV longitudinal axis. A simple LQR-based approach has been used for the
design of the docking control laws.8

The time histories of the components of the CTc vector during the AAR maneuver are shown in Fig. 7.
In the first set of simulations the purpose was to evaluate the accuracy of the estimates of the MV-based sensors

during the docking; therefore, in this case the measurements provided by the MV-based sensor are not used by the
control laws, to which ‘nominal’ noise-free measurements are provided. In the second set of simulations the MV-
based measurements of the CT vector were provided directly to the control laws. For simulation purposes, ‘nominal’
levels of uniformly distributed white noise were artificially added to all the measurements involved in Eqs. (4) and
(5). It should be emphasized that the presence of measurement errors is the main reason for the discrepancy in the
point matching which has been observed in Fig. 5. Different simulation parameters along with statistical information
on the noise acting on sensors, GPS and MV systems are reported in Table 1.

A. Performance of the MV System
Specific criteria for the selection of the ‘best’ location for the markers were not available in the technical literature.

Therefore, an empirical selection of the number of markers and their location was introduced. The main criterion
was to maximize their visibility from the location of the camera on the UAV. Another criteria was to avoid the
installation of the markers at specific locations on the aircraft subjected to structural vibrations (for example, wing
tips). An additional criterion was to avoid the installation of the markers close to the wake of the jet engines. Another
criterion was to avoid the installation of the markers in any location where their accessibility could be problematic.
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Fig. 7 Trajectory of the CT ◦ components during the docking maneuver (CT c is the distance between the UAV
camera and the tanker’s center of gravity).

A final criterion was to select locations identifying multiple planes along the x-axis of the tanker allowing, therefore,
adequate levels of resolution for the acquisition of an accurate UAV-Tanker longitudinal distance.

At the end of this analysis, a set of 9 markers was selected; their location is shown in Fig. 2. This set provided
sufficient redundancy and exhibited desirable robustness in the event of temporary/permanent loss of visibility by
one or more markers, as described below. The effects of the camera digital resolution on the estimation error and the
effects of uncertainties of the markers positions on the tanker have been described in.32

B. Performance of the Estimation System
As stated above, in this first study the MV-based estimates are not provided to the docking control laws. The norm

of the measurement error eMV = CT c − CT c
(mv) was evaluated to quantify the error:

|eMV

∣∣ =
√(

CT c
x − CT c

(mv,x)

)2 + (
CT c

y − CT c
(mv,y)

)2 + (
CT c

z − CT c
(mv,z)

)2
(17)

where CT c is the ideal signal and CT c
(mv) is the corresponding provided by the MV. The following 5 estimation

algorithms for the evaluation the tanker/UAV relative distance vector have been compared:
A). “Ideal MV” model, implying a ‘perfect labeling’ algorithm with an ‘ideal MV’ featuring ideal pointwise

markers without physical occlusions. The DGLS algorithm is then used for the solution of the ‘pose
estimation’ problem. The purpose of this scenario is to provide a benchmark.

B). “Realistic MV model B”, including ‘digital frame grabber’ and CG extraction procedures. This scheme
features the ‘robust labelling method’, described above, and the DGLS algorithm for the pose estimation’
problem.

C). “Realistic MV model C”: as in case B) with the ‘Hungarian’ labelling method in lieu of the ‘robust labelling
method’.
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D). “Realistic MV model D”: as in case B) with the ‘Mixed’ labelling method in lieu of the ‘robust labelling
method’.

E). “Realistic MV model E”: as in case B) with the ‘Greedy’ labelling method in lieu of the ‘robust labelling
method’.

C. Analysis of the |eMV| Signal
Different aspects have been evaluated and compared. Figure 8 shows the norm of the measurement error |eMV|

vs. the norm of the distance RBm for the 5 scenarios outlined above. The data are relative to a complete docking
maneuver lasting 300 s. As described above, scenario A) provides the benchmark performance. For the more realistic
scenarios B, C, D, and E, the value of |eMV| is the sum of the 3 specific contributions.

The first source of error is due to the quantization error associated with the digital camera. This error is more
relevant at large distances and it is responsible of a biasing term (function of the distance) in the estimation. This
effect becomes negligible at short distances where the estimation is nearly unbiased. The second source of error is
due to possible incorrect labeling in the matching algorithm. This in turn implies inconsistent data to the GLSDC
algorithm. This ‘labeling error’ is responsible for the large spikes for the estimations in scenarios C, D, and E.
Furthermore, in the event that labeling errors occur in a continuous sequence of frames, the problem could lead to
closed-loop instability.

The third source of error is associated with incorrect CG extraction procedure and it is mainly responsible of the
high frequency chattering in the |eMV| signal.

Of particular interest in Fig. 8 is the region (on the right) associated with the condition RBm < 5 m. Since the
simulation is performed for 300 s., the condition RBm < 5 m describes essentially the condition when the UAV is
in the 3D refueling window under the tanker. In that particular condition the loss of visibility of multiple markers

Fig. 8 |eMV| error as function of the distance RBm.
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is possible. This would then lead to deterioration of the performance of the matching algorithm causing the spikes
associated with the scenarios C, D, and E.

This issue is even clearer from an analysis of Fig. 9 where |eMV| is shown as function of time (in the [35–85] s.
window). This specific time interval is particularly relevant because it includes the final phase of the docking when
the UAV enters and remains in the 3D refueling window below the tanker. Up to approximately 45 s (that is, when
the UAV is still approaching to the tanker) a decrease in the |eMV| is noted for all the scenarios, with the exception
of the ‘ideal’ and ‘perfect’ MV-based algorithms in Scenario A. Starting at approx. 45 s the error has a tendency to
converge toward certain bounds. However, the scenarios C, D, and E present a large number of spikes, implying a
lack of robustness for the associated labeling algorithms. Only scenario B shows reduced level of error throughout
the simulation due to the desirable performance of the matching algorithm.

D. Influence of the Variable Number of the Visible and Labeled Markers
As previously described, the loss of visibility of one or more markers by the UAV camera might occur during

the docking. If this occurs, the modified GLSDC algorithm has shown capabilities for adapting itself and continuing
the estimation with the subset of the labeled markers available at that particular time step. Figure 10 shows the time
histories of the number of the labeled markers, which can be up to the number of visible markers, used by the MV
for the 5 scenarios for the same time interval as in Fig. 9. For the ‘ideal’ case of scenario A all the markers in the
camera field of view are considered visible and correctly labeled. Starting from the value ‘mL = 9’, the reduction of
the number of labeled markers is only due to loss of visibility due to physical occlusions (such as interference of the
refueling boom).

Fig. 9 |eMV| error as function of time.
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Fig. 10 Number of labeled markers in the interval [35–85] s (used by the DGLS algorithm).

For the scenarios B and C the performance of the labeling algorithms in terms of mL seem to be equivalent. A
close cross-analysis of Figs 9 and 10 reveal that the differences between scenario B and C in terms of mL (Fig. 10)
are responsible for the spikes in the estimation error in case C (Fig. 9).

The performance of the labeling algorithms in terms of mL seem to be substantially deteriorated for scenarios D

and E; even in this case it can be seen that the ‘drops’ in the value of mL shown in Fig. 10 are associated with the
spikes of the error shown in Fig. 9.

E. Quantitative Estimation of Performance
A quantitative analysis was performed separately for two specific phases within the AAR maneuver, that is for the

docking maneuver (the first 45 s.) and for the time when the UAV is located within the 3D refueling window below
the tanker (between 45 and 300 s.) associated with the condition RBm < 5 m. The need to separate the analysis is
due to the fact that in these two phases the MV estimation accuracy is clearly different.

For each of the 5 scenarios described above the performance have been compared in terms of the statistics of the
measurement error |eMV|. Thus, the mean, the Standard Deviation (SD), the maximum value and the mean number of
labeled markers were evaluated. Table 2 shows the results for all the scenarios with scenario B being considered the
‘baseline’ scenario. As stated above, scenario A is just an ideal condition. From the analysis of the results in Table 2,
a significant difference is evident between the performance of the ‘baseline’ scenario B and the performance of the
scenarios C, D,and E,especially for the phase when the UAV has reached the 3D refueling window. Particularly,
the performance degradation is clearer in terms of the standard deviation and maximum value of the error. In terms
of physical units, for the scenario B the mean value of |eMV| is approx. 18 cm with a STD less than 6 cm and with a
peak less than 35 cm.

982



FRAVOLINI, CAMPA AND NAPOLITANO

Table 2 Overall Estimation performance of the 5 MV system.

DOCKING 3DW
Performance: eMV = CT c − CT c

(mv) [m] Performance: eMV = CT c − CT c
(mv) [m]

mean(eMV ) std(eMV ) max(|eMV |) Nmark mean(eMV ) std(eMV ) max(|eMV |) Nmark

A −0.084 0.049 0.200 7.974 0.003 0.010 0.032 6.00
(11%) (6%) (8%) (107%) (2%) (20%) (9%) (106%)

B −0.709 0.741 2.479 7.466 0.181 0.051 0.341 5.68
(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

C −0.677 0.733 2.621 7.466 0.168 0.397 5.090 5.70
(95%) (99%) (105%) (100%) (92%) (794%) (1492%) (100%)

D −0.644 0.755 3.466 6.067 0.176 0.084 1.054 5.03
(90%) (102%) (139%) (81%) (97%) (168%) (309%) (89%)

E −0.102 1.411 7.788 6.728 0.191 0.889 8.348 5.30
(14%) (190%) (314%) (90%) (106%) (1778%) (2448%) (93%)

Table 3 Closed-loop performance.

DOCKING 3DW
Performance: eMV = CT c − CT c

(mv) [m] Performance: eMV = CT c − CT c
(mv) [m]

mean(eMV ) std(eMV ) max(|eMV |) Nmark mean(eMV ) std(eMV ) max(|eMV |) Nmark

B
MV in the −0.6491 0.7380 2.5558 7.5383 0.17947 0.04973 0.33073 5.8563
Loop (91%) (99%) (103%) (116%) (99%) (96%) (97%) (103%)

B
no MV in −0.7090 0.7410 2.4790 7.466 0.1810 0.0510 0.3410 5.6880
the Loop (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

D
MV in the −0.6053 1.0006 7.8360 7.8360 0.18961 0.062856 0.39673 5.6378
Loop (85%) (34%) (318%) (104%) (104%) (123%) (116%) (99%)

D
no MV in −0.6440 0.7550 3.4660 6.0670 0.1760 0.0840 1.0540 5.0310
the Loop (90%) (102%) (139%) (81%) (97%) (168%) (309%) (89%)

F. Closed Loop Performance
In the final simulation the estimates from the MV-based algorithms were provided as feedback to a set of LQR-based

docking control laws for final evaluation of the closed-loop performance [8]. Given the unsatisfactory performances
of the algorithms in the scenarios C and E, the analysis was limited to the scenarios B and D. Although the MV
estimation mechanism is clearly not dependent on the signals employed by the feedback controller, it is nevertheless
of particular interest the comparison of the performance achieved when the MV is not in the feedback loop and
the controller is driven by ‘nominal’ noise-free measurements (Table 2), and the performance achieved by using the
MV-based measurements of the CT vector in the feedback loop. The results are shown in Table 3. An analysis of this
table reveals that for scenario B the performance were fairly comparable for both cases. Some limited but significant
differences between the two cases exist for scenario D. The origin of these differences is traced back to the spikes
in the estimation error signal shown in Figure 7.

Another important conclusion from the analysis of the results in Table 3 is that both matching algorithms in
the scenarios B and D provide closed-loop robustness to temporary loss of visibility of the markers by the UAV
camera.
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VIII. Conclusions
This paper describes the comparison between different feature matching algorithms within a simulation envi-

ronment specifically built for the study of the MV-based Autonomous Aerial Refueling problem. In this study
the attention was mainly focused on the performance, accuracy and robustness of the whole MV scheme when
featuring different feature matching techniques. This analysis reveled a very high sensitivity of the pose estima-
tion algorithm on possible errors in the feature matching algorithms. It was also shown that, assuming that the
matching algorithms perform nominally, the overall closed-loop performance do not seem to be very sensitive to
temporary/complete loss of visibility for some of the physical markers, provided a sufficient redundancy in their
number. Furthermore the MV accuracy in the estimation of distance vectors seems to be appropriate given the size
of a typical 3D refueling window. Finally, the proposed matching algorithm, which is based on a rigid transla-
tion model and on the measure of matching support (derived by the overall mean matching error between the two
matching sets) has shown desirable robustness properties from extensive simulations at open-loop and closed-loop
conditions.
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